Neuromorphic Computing with NanoCrossbar Circuits

Dmitri Strukov

University of California at Santa Barbara

Acknowledgments:

Research group: G. Adam, B. Chakrabarti, X. Guo, B. Hoskins, F. Merrikh Bayat, M. Prezioso

Collaborators: P. Auroux, J. Edwards, M. Graziano (BAE), I. Kataeva (DENSO), <u>K. K. Likharev (</u>SBU), N. Do (SST), L. Sengupta (NGC)

Funding support: AFOSR MURI, ARO, DARPA UPSIDE, DENSO CORP., NSF

RECENT SURGE OF A.I.

(you could not avoid the buzz...)

The Washington Post

How artificial intelligence is moving from the lab to your kid's playroom

The New York Times

The New Hork Times

Google Car Exposes Regulatory Divide on Computers as Drivers A Learning Advance in Artificial Intelligence Rivals Human Abilities

By JOHN MARKOFF DEC. 10, 2015

The New York Times

Start-Up Lessons From the Once-Again Hot Field of A.I.

Rite By STEVE LOHR FEB. 28, 2016

Los Angeles Times

Toyota invests \$1 billion in artificial intelligence in U.S.

The Washington Post

Can AI fix the world? IBM, TED and X Prize will give you \$5 million to prove it.

Drumpf Twitterbot learns to imitate Trump via

deep-learning algorithm

"OK, it's amazing right now with ISIS, I tell you what? I don't want them to vote, the worst very social people. I love me"

Donald TrumpBot @thetrumpbot

PATTERN CLASSIFICATION IN CONVOLUTIONAL (A.K.A. "DEEP") NETWORKS

- MLP with limited bio-inspired connectivity
- the best method for hand-writing recognition
- used by NCR for check reading machines
- used by Microsoft for OCR
- 0.62% error on the MNIST set

MNIST set (60,000-image database)

000000000000	00000000000
/ 1 / 1 / / / / / / / / / / /	/ / / / / / / / / / / /
2952555555	2222222222
33333333333333333333333333333333333333	3333333333
444444444	444444444
55555555555555555555555555555555555555	555555555555
6666666666	0666666666
77777777	/ + / 7 / 7 + / / /
888888888888888888888888888888888888888	888888888888
99999999999	99999999999

PATTERN CLASSIFICATION **IN CONVOLUTIONAL (A.K.A. "DEEP") NETWORKS**

U. TORONTO'S NETWORK

- 650,000 neurons, 0.63×10⁹ synapses
- Image Net LSVRS-2010 benchmark set
- 1.2 M images; 1,000 classes
- error rates: top-1 37.5%, top-5 17%

Bottleneck: massive number of dot product (vector-by-matrix) computations between analog inputs and analog (fixed) weights

DIGITAL CIRCUITS FOR DEEP LEARNING

Nvidia's Pascal

Movidius's fanthom

15 inferences /sec @ 16-bit FP precision for ImageNet @ <2W

21 TFLOPS for deep learning performance

Google's Tensor Processing Unit

ANALOG VECTOR-BY-MATRIX COMPUTATION

- Proposed by Carver Mead and his students 25+ years ago
- Exact analog-domain dot-product due to Ohm's and Kirchhoff's law
- No need to waste energy on memory bits movement (in-memory computing)
- Major challenge: adjustable cross-point devices
- Two very promising recent options:
 - Custom-built metal-oxide memristors
 - Redesigned commercial NOR flash
- Other (not discussed) options: phase change, ferroelectric, and magnetic devices

	Digital								
	CPU	GPU	FPGA	ASIC	NOR	NOR	2D	3D	Human
	2.66 GHz	1 GHz	200 MHz	400 MHz	ESF-1	ESF-3	memristors	memristors	Brain
	45 nm	33 nm	40 nm	65 nm	180 nm	55 nm	200 nm	10 nm	
Time (s)	~8×10 ⁻³	~3×10 ⁻⁴	~1.5×10 ⁻⁴	~5×10 ⁻⁵	~2×10 ⁻⁶	~7×10 ⁻⁷	~5×10 ⁻⁸	~10 ⁻⁸	~3×10 ⁻²
Power (W)	~30 to 40	~40	~10	~3	~1	~1	~1	~0.1	~10-5
Energy (J)	~3×10 ⁻¹	~10-2	~10-3	~10 ⁻⁴	~2×10 ⁻⁶	~7×10 ⁻⁷	~5×10 ⁻⁸	~10-9	~3×10 ⁻⁷

Strukov et al., DRC'16

MEMRISTORS

Typical I-V for Pt/TiO_{2-x}/Pt devices

Two major types of memristors

Current (mA)

Alibart et al., Nature Comm, 2013

- Analog switching: Any state between ON and OFF
- Strongly (superexp) nonlinear switching dynamics
- Gray area = no change
- Memory state defined as current measured within gray area

PASSIVE MEMRISTIVE CROSSBAR CIRCUIT

Crossbar circuit

Analog properties and state tuning

Major features

- · OT1R
- 200 nm wide lines
- Al₂O₃ and TiO_{2-x} by sputtering
- Very uniform (~17%) norm. RMS of R@0.1V for 8x10 virgin array
- >500K stress pulses without much degradation

M. Prezioso et al.*, Nature* May 2015 M. Prezioso et al.*, IEDM'15*

CLASSIFIER OPERATION (INFERENCE)

Neurons functionality (opamp) is emulated in software
Differential pair of memristors per weight

M. Prezioso et al., *Nature* May 2015 M. Prezioso et al., *IEDM'15*

CLASSIFIER IN-SITU TRAINING (WEIGHT UPDATE)

- Neurons functionality (opamp) is emulated in software
- Differential pair of memristors per weight
- M. Prezioso et al., *Nature* May 2015 M. Prezioso et al., *IEDM'15*

- Half-biasing technique
- One column at a time (fully parallel possible with stochastic training¹mode)

EXPERIMENTAL RESULTS

Classification performance (batch)

Batch Manhattan rule in-situ training:

- Trained on the original training set
- Test set formed by flipping two pixels
- Perfect classification for multiple runs on training set
- Perfect classification on test set hardly possible (e.g. see pattern highlighted with red)

OVERCOMING NONLINEAR SWITCHING KINETICS

MODELING OF LARGE-SCALE CLASSIFIERS

Experimentally-verified memristor device models

 Classification performance results for large-scale deep learning convolutional neural networks

Data set	Software		Xbar in-situ (var. ampl.)		e	Xbar x-situ 2%	Xbar ex-situ 0.2%	
500	best average		best	est average		best average		average
MNIST	0.40	0.47 ± 0.05	0.4	0.48 ± 0.024	0.61	0.89 ± 0.22	0.41	0.42 ± 0.01
GTSRB	1.36	1.53 ± 0.18	1.26	1.56 ± 0.27	1.42	1.56 ± 01	1.46	1.47 ± 0.01
CIFAR10	15.63	15.91±0.22	15.67	15.87±0.22	19.77	20.29±0.43	15.5	15.8 ± 0.01

Performance sensitivity to defects and ex-situ training precision

Main result: Comparable to the state-of-the-art classification performance for MNIST, GTSRB, and CIFAR benchmarks when using accurate models of hardware

I. Kataeva et al., *IJCNN'15,* M. Prezioso et al., *IEDM'15*

F. Merrikh Bayat et al., Applied Physics A, 2015

CMOS/NANO HYBRIDS: THE IDEA

WHAT:

- CMOS stack + simple nanoelectronic add-on
- nanowire / memristor crossbar

WHY:

- CMOS functionality and infrastructure intact
- potentially inexpensive fabrication

NVM ("FLASH") MEMORY TECHNOLOGY

NVM CELLS FOR ANALOG APPLICATIONS

(from late 1990s: C. Mead, C. Diorio, P. Hasler,...)

Example: "extended drain" NMOS structure

Hasler's group at Georgia Tech (http://www-old.me.gatech.edu/mist/gokce.htm)

Chip built	Process node (nm)	Die area (mm²)	No of synapses	Synapse area (µm²)	Syn density	Synapse storage resolution and complexity	
GT neuron1d (Brink et al., 2012)	350	25	30,000	133	1088	>10 bit, STDP	
FACETs chip (Schemmel et al., 2006, 2008b)	180	25	98,304	108	3338	4 bit register	
Stanford STDP	250	10.2	21,504	238	3810	STDP, no storage	
INI chip (Indiveri et al., 2006)	800	1.6	256	4495	7023	1 bit w/learning dynam	
ISS + INI chip (Camilleri et al., 2007)	350	68.9	16,384	3200	26,122	2.5 w/learning dynam	

Bold value indicates synapse density as the synapse area normalized by the square of the process node.

J. Hasler and B. Marr (2013)

SILICON STORAGE TECHNOLOGY, INC. (SST): ESF1

Output current as a function of applied voltages:

FLASH ARRAY REDESIGN FOR ANALOG APPLICATIONS

TUNING (OF EACH CELL!) TO PRE-SET VALUES

F. Merrikh-Bayat et al. (2015)

VECTOR-BY-MATRIX MULTIPLIER (VMM) DEMO

NanoXbar Workshop, July 2016

F. Merrikh-Bayat et al. (2015)

SPIKING NEURAL NETWORKS

Motivation

- Richer functionality (spatial and temporal processing) and better energy efficiency of spiking networks as compared to firing rate
- Local (Hebbian) training → more efficient hardware
- Essential feature to demonstrate: Spike-timing dependent plasticity (STDP)

AG (%)

- Three STDP windows demonstrated using crossbar
- The most accurate STDP demonstration to date

Experimental demonstration of STDP

Experimentally-verified analytical model STDP

Simulation of memristor-based spiking neural networks

SUMMARY

- Emerging nonvolatile memories enable (for the first time?) efficient analog neural network implementations and could challenge human brain in energy efficiency and speed
 - Experimental demonstration of key hardware block for both memristor and flash-based artificial neural networks
 - Small scale demonstrations of firing-rate feedforward/recurrent and spiking memristor-based artificial neural networks with comparable to state-of-the-art functional performance for large scale NVM-based networks via simulation with data-verified device models
 - Estimated >100x / >1000x improvement in energy efficiency as compared to ASICs for flash / memristor based implementations
- Need industry involvement to develop large-scale memristor circuit
 - no such issue with flash memory-based circuit

	Digital								
	CPU	GPU	FPGA	ASIC	NOR	NOR	2D	3D	Human
	2.66 GHz	1 GHz	200 MHz	400 MHz	ESF-1	ESF-3	memristors	memristors	Brain
	45 nm	33 nm	40 nm	65 nm	180 nm	55 nm	200 nm	10 nm	
Time (s)	~8×10 ⁻³	~3×10 ⁻⁴	~1.5×10 ⁻⁴	~5×10 ⁻⁵	~2×10 ⁻⁶	~7×10 ⁻⁷	~5×10 ⁻⁸	~10-8	~3×10 ⁻²
Power (W)	~30 to 40	~40	~10	~3	~1	~1	~1	~0.1	~10-5
Energy (J)	~3×10 ⁻¹	~10-2	~10-3	~10-4	~2×10-6	~7×10-7	~5×10 ⁻⁸	~10-9	~3×10 ⁻⁷

Strukov et al., DRC'16 24

THANK YOU!

strukov@ece.ucsb.edu

SELECTED RECENT PUBLICATIONS

- F. Merrikh-Bayat, X. Guo, M. Klachko, N. Do, K. Likharev, and D. Strukov, "Model-based high-precision tuning of NOR flash memory cells for analog computing applications", to appear in Device Research Conference (DRC'16), Newark, DE, June 2016 (NOR flash)
- M. Prezioso, Y. Zhong, D. Gavrilov, F. Merrikh Bayat, B. Hoskins, G. Adam, K.K. Likharev, and D.B. Strukov, "Spiking Neuromorphic Networks with Metal-Oxide Memristors", to appear in International Symposium on Circuits and Systems (ISCAS'16), Montreal, Canada, May 2016 (Memristor spiking neural networks)
- M. Prezioso, F. Merrikh Bayat, B. Hoskins, K. Likharev, and D. Strukov, "Self-adaptive spike-time-dependent plasticity of metal-oxide memristors", Nature Scientific Reports 6, art. 21331, Jan. 2016. (Memristor spiking neural networks)
- F. Merrikh Bayat, M. Prezioso, X. Guo, B. Hoskins, D.B. Strukov, and K.K. Likharev, "Memory technologies for neural networks", in: Proc. IMW'15, Monterey, CA, May 2015, pp. 1-4. (brief review)
- F. Merrikh Bayat, X. Guo, H.A. Om'mani, N. Do, K.K. Likharev, and D.B. Strukov, "Redesigning commercial floating-gate memory for analog computing applications", in: Proc. ISCAS'15, Lisbon, Portugal, May 2015, pp. 1921-1924. (NOR flash)
- M. Prezioso, F. Merrikh Bayat, B.D. Hoskins, G.C. Adam, K.K. Likharev, and D.B. Strukov, "Training and operation of an integrated neuromorphic network based on metal-oxide memristors", Nature 521, pp. 61-64, May 2015. (Memristor firing-rate MLP networks)
- X. Guo, F. Merrikh-Bayat, L. Gao, B. D. Hoskins, F. Alibart, B. Linares-Barranco, L. Theogarajan, C. Teuscher, and D.B. Strukov, "Modeling and experimental demonstration of a Hopfield network analog-to-digital converter with hybrid CMOS/memristor circuits", Frontiers in Neuroscience 9, art. 488, Dec. 2015. (Memristor recurrent networks)
- F. Merrikh Bayat, B. Hoskins, and D.B. Strukov, "Phenomenological modeling of memristive devices", Applied Physics A 118 (3), pp. 770-786, 2015. (Memristor model)
- M. Prezioso, I. Kataeva, F. Merrikh-Bayat, B. Hoskins, G. Adam, T. Sota, K. Likharev, and D. Strukov, "Modeling and implementation of firing-rate neuromorphic-network classifiers with bilayer Pt/Al2O3/TiO2-x/Pt memristors", IEDM'15, Dec. 2015. (Memristor firing-rate MLP networks)
- M. Payvand, A. Madhavan, M. Lastras-Montaño, A. Ghofrani, J. Rofeh, K.-T. Cheng, D. Strukov, L. Theogarajan, "A configurable CMOS memory platform for 3D-integrated memristors", in: Proc. ISCAS'15, Lisbon, Portugal, May 2015, pp. 1378-1381. (Memristor integration)
- I. Kataeva, F. Merrikh Bayat, E. Zamanidoost, and D.B. Strukov, "Efficient training algorithms for neural networks based on memristive crossbar circuits", in: Proc. IJCNN'15, Killarney, Ireland, July 2015, pp. 1-8. (Memristor firing-rate MLP networks modeling)
- F. Alibart, E. Zamanidoost, and D.B. Strukov, "Pattern classification by memristive crossbar circuits with ex-situ and in-situ training", Nature Communications 4, art. 2072, 2013 (Memristor firing-rate MLP networks)
- J.J. Yang, D.B. Strukov and D.R. Stewart, "Memristive devices for computing", Nature Nanotechnology 8, pp. 13-24, 2013 (review) 26